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Abstract

Reynolds shear stress is the key momentum transport term in
wall turbulence and as a consequence has been the focus of nu-
merous theoretical modelling attempts in the past. Here, we in-
vestigate the seminal proposal by Townsend [35, 34] that wall-
bounded flows are comprised of active and inactive motions; the
active motions being those that are solely responsible for pro-
ducing Reynolds shear stress and follow self-similarity when
normalised with the wall-normal distance and friction velocity.
This paper builds on the recent work of Deshpande et al. [12],
where a methodology is proposed to segregate the active and
inactive contributions to the total turbulent kinetic energy. The
effectiveness of this methodology is demonstrated here by ap-
plying it to three published wall-turbulence datasets, spanning
over a decade change in friction Reynolds number (Reτ). Ac-
tive contributions to the streamwise, spanwise and wall-normal
turbulence intensities are estimated individually and found to
exhibit self-similar characteristics consistent with Townsend’s
hypothesis. The Reynolds shear stress, estimated solely from
the active contributions, is also found to closely match the one
obtained conventionally from the dataset, providing direct em-
pirical support for the concept of active and inactive motions.
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Introduction

The logarithmic (log) region of a wall-bounded flow has long
been the focus of research from the perspective of turbulence
modelling. It derives its name from the logarithmic variation
of the mean velocity (U) as a function of the distance from the
wall, z, following:

U+ =
1
κ

log(z+)+A. (1)

Here, U+ =U /Uτ, where Uτ is the friction velocity, z+ = zUτ/ν,
where ν is the kinematic viscosity, κ is the von Kármán con-
stant, and A is a constant. While (1) has been derived from a
number of previous approaches, starting from the mixing length
theory of Prandtl [30], the present manuscript focuses on the
arguments proposed by Townsend [35, 34] in the context of
the log-region, which he referred to as the ‘equilibrium layer.’
Townsend considered the local rates of energy production and
dissipation to be in balance in this region, leading him to the
same expression as that reached by Prandtl [30]:

−uw+ = lmUτ

dU+

dz+
, (2)

were, lm is the mixing length. Throughout this paper, we denote
the velocity fluctuations along streamwise (x), spanwise (y) and
wall-normal (z) directions by u, v and w, respectively. uw+,
is the (kinematic) Reynolds shear stress. Equation (2) leads to
the log-law (1) when lm = κz and -uw+ = 1. Townsend [35]
interpreted this condition (lm ∝ z) in a physical sense in terms
of an attached eddy: “if the Reynolds stress at any point were
caused mostly by contributions from eddies whose scales are

comparable with distance of the point from the wall since they
all extend to the wall and are, in a sense, attached to it.”

The aforementioned arguments laid the foundation of
Townsend’s attached eddy hypothesis [34], from which the
attached eddy model (AEM) of wall turbulence [28, 21] has
evolved over time. The term ‘attached’ used here refers to
any flow structure whose geometric lengths scale with z,
respectively. The AEM conceptually models the kinematics in
the log-region of a canonical wall-bounded flow by a hierarchy
of randomly distributed, geometrically self-similar attached
eddies, with a population density inversely proportional to
their height (H ). According to Townsend [34], the heights of
the attached eddies can vary in the range O(zl) . H . O(δ),
with δ corresponding to the characteristic outer scale of the
wall-bounded flow while zl corresponding to the start of the
log-region. In addition to complying with the log-law given in
(1), the AEM also proposes the streamwise (u2) and spanwise
(v2) turbulence intensities, resulting from the combined
contributions from all attached eddies, to vary logarithmically
with respect to the distance from the wall (z) in the log-region,
while the variance of the wall-normal velocity (w2) remains
constant. This can be expressed mathematically as:

u2+ = B1−A1 log
(

z
δ

)
,

v2+ = B2−A2 log
(

z
δ

)
, (3)

w2+ = B3, and uw+ = B4,

where A1−3 and B1−3 are constants. These expressions have
received substantial support in the recent literature from exper-
iments [13, 22, 4] as well as simulations [15, 18, 26].

Considering the differing trends amongst the Reynolds stresses
in (3), where the variances of the wall-parallel velocity compo-
nents vary with Reτ at a fixed z+, while w2+ and uw+ do not,
Townsend [35] commented that: “it is difficult to reconcile these
observations without supposing that the motion at any point
consists of two components, an active component responsible
for turbulent transfer and determined by the stress distribution
and an inactive component which does not transfer momentum
or interact with the universal component.” He further added
“that the inactive motion is a meandering or swirling motion
made up from attached eddies of large size which contribute to
the Reynolds stress much further from the wall than the point
of observation”. The present manuscript further elaborates on
these interpretations by presenting a simple mathematical de-
scription, combined with appropriate empirical support, for the
concept of active and inactive motions.

For this, we begin by considering the simplest attached eddy
model for a wall-bounded flow [7], comprising attached eddies
as the only eddying motions. Figure 1(a) schematically depicts
the signatures of all three velocity components from a simpli-
fied vortex structure, which is representative of an attached eddy
of height H . Given the inviscid nature of the model, slip is al-
lowed at the wall (i.e. a finite u and v), while w = 0 due to the
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Figure 1. (a) Streamwise, spanwise and wall-normal velocity signatures from a typical attached eddy of height H , where the blue and red regions denote
the low- and high-momentum regions for the corresponding velocity fluctuations. (b) Townsend eddy intensity functions (I) for attached eddies of three
different heights Hi, with H1 < H2 < H3. Here, ui, vi and wi denote the velocity signatures from the corresponding attached eddies which are sensed
by the hotwire (HW) probe depending on its wall-normal position z, indicated by a dash line.

impermeability condition at the wall. This is ensured by using
an image vortex about the plane of the wall. The final result
is that the u- and v- signatures are present all the way from H ,
down to the wall, while the w-signature remains spatially lo-
calized at H . It is this very nature of the velocity signatures
which results in the ‘active’ and ‘inactive’ contributions from
the individual attached eddies, as will be explained below.

To highlight the difference between the two contributions, fig-
ure 1(b) depicts the Townsend eddy intensity function, Ii j
(where i, j = u, v or w), which represents the contribution
of each eddy to the individual turbulence stresses as a func-
tion of z [28, 21]. Here, Ii j is considered for the Reynolds
stresses listed in (3), for eddies of three different heights (H1–
H3), each symbolic of a hierarchy of attached eddies as per
Townsend’s hypothesis. The intensity functions associated with
the normal stresses (Iii) are representative of the corresponding
velocity signatures depicted in figure 1(a). Using these func-
tions, figure 1(b) depicts the cumulative contribution from the
three different eddies to the Reynolds stresses measured by a
hotwire probe. For the probe positioned at z ∼ H1 for exam-
ple, contributions to u2(z) and v2(z) would come from all three
eddies, while the contributions to w2(z) (and consequently to
uw) would be solely from the eddy of height H1. On increas-
ing the probe wall-normal location to z ∼ H2, contributions to
the wall-parallel stresses now come from the tallest two eddies
while those to w2(z) and uw(z) would only be from the eddy of
height H2, and so on. Correlating the observations from figure
1 with Townsend’s definition, the active motions at any z would
thus correspond solely due to the attached eddies of height, H
∼ O(z). On the other hand, the inactive motions at z are a con-
sequence of comparatively taller and larger attached eddies of
height O(z) � H . O(δ). Such attached eddies add to u(z)
and v(z) without making any substantial addition to w(z) (and
thus to uw(z)). Therefore, while only active motions contribute
to the Reynolds shear stress and the wall-normal velocity vari-

ance at z, the wall-parallel velocity variances receive contribu-
tions from both active and inactive motions. As a consequence,
the active motions are defined as the fraction of attached eddy
contributions which exhibit scaling with z and Uτ (i.e. wall-
scaling). The logarithmic decay of the wall-parallel velocity
variances (equation 3), on the other hand, is a consequence of
the comparatively large scale inactive motions with a population
density inversely proportional to their size.

The aforementioned discussion motivates the decomposition of
the attached eddy fields as per Panton [27]:

u = uactive +uinactive,

v = vactive + vinactive, (4)
w = wactive.

Given that the active and inactive velocity fields are uncorre-
lated [35, 5], the Reynolds stresses in (3) can also be decom-
posed as:

u2 = u2
active +u2

inactive,

v2 = v2
active + v2

inactive, (5)

w2 = w2
active,

uw = (uactive)(wactive) = (uactive)(w).

This decomposition is based on neglecting the non-linear in-
teractions (like modulation) across these motions known from
previous studies [24, 23, 20, 6, 36]. These interactions, how-
ever, do not show up in the second-order velocity statistics (i.e.,
the Reynolds stresses), which are of prime interest in the present
work.

While (4) and (5) provide a mathematical description of the ac-
tive and inactive contributions to the total energy, they have
been defined considering a pure attached eddy field. A real



Flow Channel ZPG TBL ZPG TBL

Reτ ≈ 934 2 000 14 000

Dataset del Alamo et al. [8] Sillero et al. [32] Deshpande et al. [10, 12]

Symbol C1 B1 B2

Set−up z+o z+r z+o z+r z+o z+r

Φii 15, 2.6
√

Reτ – 0.15Reτ = z+o 15, 2.6
√

Reτ – 0.15Reτ = z+o 15, 2.6
√

Reτ – 0.15Reτ ≈ z+o

Φcross
ii 2.6

√
Reτ – 0.15Reτ 15 2.6

√
Reτ – 0.15Reτ 15 2.6

√
Reτ – 0.15Reτ 15

Table 1. Table summarizing the various published wall-turbulence datasets, with synchronized multi-point velocity signals across several z+r and z+o ,
utilized to estimate two different types of two-dimensional spectra, Φii and Φcross

ii . Terminology used in the table has been defined in the text, where i
represents the velocity fluctuations u, v or w. Highlighted values (in bold) are used to indicate the reference location close to the wall, while 2.6

√
Reτ

and 0.15Reτ are the lower and upper bounds of the log-region [22]. Normalization in viscous units is denoted by the superscript ‘+’.

wall-bounded flow, however, also comprises of other ‘non-self-
similar’ contributions [1, 10, 37], which also need to be recog-
nized and correctly accounted for while considering these de-
compositions. These include the small-scale energy contribu-
tions from the inertial sub-range [29, 31], as well as those cor-
responding to the fine dissipative scales, which are small com-
pared to the inertial motions in the log-region. Other contribu-
tions come from the δ-scaled superstructures or very-large-scale
motions, which add to u2 and v2 [1, 10, 37] but not to w2, the
latter being confirmed by the w-velocity energy spectra exhibit-
ing wall-scaling [5, 25, 16, 17, 3]. These characteristics suggest
the δ-scaled superstructure behaviour to be aligned with the in-
active motions, meaning their contributions would end up in
u2

inactive and v2
inactive [12] in the context of the decomposition

given in (5).

Recently, Deshpande et al. [12] proposed a methodology to
segregate u2

inactive and u2
active in the logarithmic layer of a

zero pressure gradient turbulent boundary layer (ZPG TBL).
The present manuscript reviews their methodology, and demon-
strates its applicability to decompose the inactive and active
contributions for all three velocity components, and for canon-
ical wall-bounded flows in general. The methodology utilizes
the characteristic of the inactive motions, say at any zo in the
log-region, to be associated predominantly with the large ed-
dies in comparison to the motions ‘active’ at the same loca-
tion, which means the coherence of the inactive motions ex-
tends across a significant wall-normal distance [34, 1]. This is
consistent with Townsend’s ideas [35, 34], who described the
inactive motions (at zo) to be superimposing a low-frequency
signature across the entire wall-normal range below zo, includ-
ing the near-wall region [14] where we consider our reference
location, zr. The presence of their signatures across the large
wall-normal range (zr � zo) provides an opportunity to isolate
the inactive motions via a scale-specific cross-correlation of the
velocity signals synchronously acquired at zr and zo, as demon-
strated previously in Refs [11, 1]. Once the inactive component
is estimated (v2

inactive or u2
inactive), it can be simply subtracted

from the respective Reynolds stress at zo (v2 or u2) to estimate
the energy associated with the active motions at zo (equation 5).
In the case of the wall-normal component, however, w2

inactive ≈
0 as per our earlier discussion [12], and hence w2 should reflect

the characteristic features expected of w2
active [5, 25, 16, 17, 3].

To demonstrate the efficacy of the decomposition methodology,
several published wall-turbulence datasets with synchronized
multi-point velocity signals measured across a large domain of
spanwise (∆y) and wall-normal (|zr - zo|) offsets are considered.
The data spans over a decade of Reτ, with the velocity signals in
each dataset considered across the log-region of the shear flow,
making it possible to test the velocity spectra associated with the
active motions for their expected wall-scaling. The methodol-
ogy involves first computing the two-dimensional (2-D) energy
spectrum from the available velocity components at zo and zr,
thereby giving a map of the energetic motions of various span-
wise (λy = 2π/ky) and streamwise (λx = 2π/kx) wavelengths
coherent across zr and zo [10]. These two-point statistics, can
be utilized in conjunction with a spectral linear stochastic es-
timation (SLSE) based procedure [33, 2, 12], to compute the
fraction of the two-dimensional spectrum (at zo) corresponding
to the inactive motions at zo.

Experimental and numerical data

Three published datasets ranging over a decade of Reτ are an-
alyzed in the present study. Two are low Reτ direct numerical
simulation (DNS) datasets for the turbulent channel flow (Reτ ≈
934;[8]) and the ZPG TBL (Reτ ≈ 2 000;[32]), while the third
is a high Reynolds number (Reτ ≈ 14 000) experimental dataset
for the ZPG TBL [10, 12]. Information associated with these
datasets is briefly described below.

High Reτ experimental dataset

The experimental dataset (B2) was acquired in the High
Reynolds Number Boundary Layer Wind Tunnel (HRNBLWT)
at the University of Melbourne under nominally ZPG conditions
and acceptable free-stream turbulence levels [19] across its test
section dimensions of' 1.89 m× 0.92 m× 27 m. All the mea-
surements associated with the present dataset were conducted at
free-stream velocities of U∞ ≈ 20 ms−1 in the working section,
at a streamwise location approximately 20 m from the begin-
ning of the working section, resulting in a boundary layer at Reτ

≈ 14 000. The experiments were conducted via a unique exper-
imental set-up employing four single-wire hotwire probes, the
positioning of which has been depicted schematically in figure



1 of Refs [10, 12]. The set-up consisted of all four probes posi-
tioned at the same streamwise location but at different spanwise
positions, with the capability to vary the latter for two of the
four probes. This facilitated synchronous measurement of the
u-signals over a large domain of spanwise offsets (∆y), ranging
between 0 . ∆y . 2.7δ, where δ is the TBL thickness. During
each experiment, the pair of spanwise-traversing probes were
always positioned at the same wall-normal location zo, while
the pair of spanwise-fixed probes were maintained at a different
wall-normal position, zr. The synchronous u-signals acquired
from such an arrangement is utilized to compute the two-point
cross-correlation following:

Rioir (zo,zr;∆x,∆y) = i(zo;x+∆x,y+∆y)i(zr;x,y), (6)

with the overbar denoting ensemble time average, and i = u in
case of the experimental dataset. Rioir is converted from a func-
tion of time to that of ∆x by using Taylor’s hypothesis, which
assumes flow structures coexisting at zo to be moving along x
at the mean flow velocity at zo. Subsequently, the 2-D Fourier
transform of Rioir is computed to obtain the 2-D spectrum fol-
lowing:

φioir (zo,zr;kx,ky) = (7)∫ ∫
∞

−∞

Rioir (zo,zr;∆x,∆y)e− j2π(kx∆x+ky∆y)d(∆x)d(∆y),

where j is a unit imaginary number.

The present study focuses on two types of 2-D spectra, Φii and
Φcross

ii , which are defined following:

Φii(z+o ;λx,λy) = |k+x k+y φ
+
ioio(z

+
o ;λx,λy)| and (8)

Φ
cross
ii (z+o ,z

+
r ;λx,λy) = |k+x k+y φ

+
ioir (z

+
o ,z

+
r ≈ 15;λx,λy)|,

where i corresponds to the velocity fluctuations in either of the
three directions: u, v or w, while (||) denotes the modulus op-
eration. While Φii consists of contributions from all coexisting
eddies at zo, Φcross

ii is representative of contributions from only
those eddies that are coherent across zo and zr [10]. The two
spectra are fed in to the SLSE methodology [12] to compute the
subsets of Φii comprising of the inactive and active contribu-
tions at zo. In the case of dataset B2, the analysis is solely re-
stricted to Φuu and Φcross

uu , with the details of their wall-normal
locations listed in table 1. Interested readers may refer to Refs
[10, 12] for a comprehensive discussion and full details of the
aforementioned measurements.

Low Reτ DNS datasets

Two low Reτ datasets from the ZPG TBL DNS of Sillero et al.
[32] and channel flow DNS of del Alamo et al. [8] are also
considered in the present study. Availability of all three veloc-
ity components from both these datasets allows computation of
Φii(z+o ) and Φcross

ii (z+o ,z
+
r ) following (6) – (8) for i = u, v and

w, at z+o and z+r consistent with the experimental dataset (ta-
ble 1). Thirteen DNS time blocks of each of these datasets are
selected for achieving a reasonable convergence of these statis-
tics. Hence, in the present study, while the characteristics of the
u-motions are tested across a decade of Reτ, the analysis of the
v- and w-motions is limited only to the low Reτ regime.

Methodology to decompose inactive and active contribu-
tions to the total energy

As discussed previously in the introduction, the inactive mo-
tions at zo predominantly conform to the large motions that
are spatially coherent over a significant wall-normal distance.
Deshpande et al. [12] used this as the basis to decompose

Φii(zo). They performed a scale-specific linear decomposition
of Φii(zo), into its inactive and residual component, by making
use of the scale-by-scale coupling that exists between the veloc-
ity signals measured simultaneously at the two locations, z+r ≈
15 and z+o (in the log-region), such that z+r � z+o . The scale-by-
scale coupling is represented here in the form of Φcross

ii , which
is considered at various z+o for both the DNS as well as experi-
mental datasets (table 1).

To give a qualitative indication of how Φcross
ii differs from Φii,

figures 2(a,c) show Φcross
uu and Φuu contours from the two ZPG

TBL datasets at z+o across the log-region as an example. It is
evident that the former represents the large energetic motions
associated with the inactive motions at z+o . Φcross

ii also com-
prises energy signatures from the very large-scale superstruc-
tures (scaling with δ), which are known to span across the entire
log-region and extend all the way down to the wall [1, 10, 37].
These observations motivate the use of Φcross

ii in conjunction
with the SLSE [33, 2, 12], to compute the linear stochastic esti-
mate of the energy contributions (Φia

ii ) from the motions inactive
at zo following:

Φ
ia
ii (z

+
o ;λx,λy) =

[
Φcross

ii (z+o ,z
+
r ≈ 15;λx,λy)

]2
Φii(z+r ≈ 15;λx,λy)

, (9)

whereby Φia
ii (z+o ) is essentially a normalized version of

Φcross
ii (z+o ,z

+
r ≈ 15), with the scale-by-scale normalization done

by Φii(z+r ≈ 15). Readers interested to see the step-by-step pro-
cedure to arrive at the expression in (9) may refer to appendix
1 of Deshpande et al. [12]. It is important to note here that
the calculations in (9), in case of the experimental dataset, are
conducted in the frequency domain, and are later converted to
λx by invoking Taylor’s hypothesis, using the mean streamwise
velocity at zo as the convection velocity [2, 12]. In accordance
to the linear superposition assumption in (5), subtracting Φia

ii
from Φ leaves a residual:

Φ
a
ii(z

+
o ;λx,λy) = Φii(z+o ;λx,λy)−Φ

ia
ii (z

+
o ;λx,λy). (10)

This is because for i = u, as an example, Φuu, Φa
uu and Φia

uu are

representative of u2+, u2+
active and u2+

inactive, respectively. If the
flow comprised of only inactive and active inertial motions, Φia

ii
and Φa

ii would respectively be the inactive and active compo-
nent. We, however, refer to Φa

ii as the residual spectrum, since
it also consists of small energy contributions from the inertial
sub-range as well as fine dissipative scales, apart from the more
energetic active motions.

Figures 2(b,d) plots the constant energy contours for the two
sub-components Φia

uu(z+o ) and Φa
uu(z+o ), for the two ZPG TBL

datasets at z+o across the log-region as an example. These sub-
sets have been estimated using (9) and (10), using the corre-
sponding spectra shown in figures 2(a,c), respectively. While
Φa

uu takes up the small-scale end of the spectrum, Φia
uu is re-

stricted to the large-scale portion of Φ. Figure 2 also shows the
line λy ∼ λx, which is indicative of geometric self-similarity.
For the wall-normal location at the lower end (figure 2(b)) of
the log-region, both Φa

uu(z+o ) and Φia
uu(z+o ) nominally follow the

λy ∼ λx line, while this is obscured for Φuu, in the intermediate
and large-scale range [10]. The conformance of Φia

uu and Φa
uu

contours to the linear relationship is consistent with the hypoth-
esis of Townsend [35, 34], who proposed both the inactive and
active motions to be related to the self-similar attached eddy
contributions. The two motions, however, correspond to differ-
ent hierarchies of the attached eddies: while the active motions
at z+o are associated with the attached eddies of height, H ∼
O(zo), the inactive motions conform to larger eddies of height
O(zo)� H . O(δ). This explains why the contribution from
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Figure 2. (a,c) Constant energy contours for Φuu(z+o ), Φcross
uu (z+o , z+r ≈ 15) and Φuu(z+r ≈ 15) at energy level of 0.15 plotted for (a) z+o ≈ 2.6

√
Reτ and

(c) z+o ≈ 0.15Reτ. (b,d) Constant energy contours for Φia
uu(z+o ) and Φa

uu(z+o ), computed via (9) and (10), plotted at the same energy level and z+o as in
(a,c), respectively. In (a-d), contours on the left and right side correspond to those computed from datasets B1 and B2, respectively. Dashed green lines
represent the linear relationship, λy ∼ λx. The figure has been adapted from Ref. [12].

the inactive motions to Φia
uu reduces with increase in z+o (figures

2(b,d)). In contrast, a substantial scale range is observed in the
case of the Φa

ii contours irrespective of the increase in z+o , with
the contours displaced to comparitively larger scales, which is
indicative of its zo-scaling. With the procedure to estimate Φa

ii
and Φia

ii now defined, next the spectra contours are tested for
δ- and zo-scaling to investigate the extent to which the respec-
tive contours relate with the characteristics of the inactive and
active motions. Due to the limited availability of space here,
the present analysis has been limited to active motions only.
Interested readers are referred to Deshpande et al. [12] for a
thorough analysis on both the inactive and active contributions.

Active motions

Figure 3 shows the constant energy contours of Φa
ii (for i = u,

v or w), estimated for the three datasets at z+o across the log-
region. The contours are plotted as a function of wavelengths
scaled with δ (figures 3(d-f)) as well as zo (figures 3(a-c)).
Given the exclusive association of the w-velocity component
with the active motions [5, 25, 3, 12], i.e Φww ≈ Φa

ww, here
we have directly considered the energy contours of Φww for
comparison. The residual component of each velocity spectrum
can be noted to obey reasonable wall-scaling, which is evident
from the overlapping Φa

ii contours plotted with the wavelengths
scaled with zo. On the other hand, no overlap can be noted
in case of the wavelengths normalized by δ. The fact that the
Φa

ii contours follow wall-scaling, reaffirms the efficacy of the
present methodology to segregate the inactive and active contri-
butions from the total energy, for all three velocity components
in a wall-bounded flow. Further, the good agreement between
Φa

uu (figure 3(a)) estimated from both the DNS and experimen-

tal datasets suggests the local mean streamwise velocity to be
a reasonable choice for the convection velocity for the active
motions.

The residual component of the 2-D spectra also conveys im-
portant information related to the geometric characteristics of
the active motions, which may prove useful for future con-
ceptual modelling efforts. Φa

ii contours, corresponding to all
the velocity components, align along the linear relationship (λy
∼ λx) which is indicative of geometric self-similarity. It sug-
gests that the active motions can be conceptually modelled us-
ing Townsend’s self-similar attached eddies. The results in fig-
ure 3 indicate that such an attached eddy should have its domi-
nant streamwise/spanwise aspect ratios following λx/λy ≈ 3 (for
u), λx/λy ≈ 1.4 (for w) and λx/λy ≈ 1 (for v). Amongst these
ratios, interestingly, the aspect ratio corresponding to the u-
contributions closely relates with the self-similar wall-coherent
vortex clusters (λx ∼ 2-3 λy) analyzed previously by del Alamo
et al. [9] and Hwang [14]. This close agreement suggests the
decomposition of Φii into the two sub-components Φia

ii and Φa
ii,

comprising significant self-similar attached eddy contributions,
and relating well to the two-component attached eddy structure
hypothesized by Hwang [14].

Reynolds shear stress co-spectra

Townsend [35, 34] defined the active motions to be the sole
Reynolds shear stress carrying motions at any zo, with the co-
existing inactive motions contributing negligibly to the shear
stress at zo. This means that the Reynolds shear stress co-
spectra, which is defined as:

Φuw(z+o ;λx,λy) = Re[k+x k+y φ
+
uw(z

+
o ;λx,λy)], (11)



10
-2

10
-1

10
0

λx/δ

10
-2

10
-1

10
0

10
1

λ
y
/δ

(d)Φa
uu = 0.2(Φa

uu)max

zo/δ

C1

B1

B2

10
0

10
1

10
2

λx/zo

10
0

10
1

10
2

λ
y
/z

o

λ
x
=
3λ

y

(a)Φa
uu = 0.2(Φa

uu)max

10
0

10
1

10
2

λx/zo

10
0

10
1

10
2

λ
y
/z

o

λ
x
=
λ
y

(b)Φa
vv = 0.2(Φa

vv)max

10
-2

10
-1

10
0

λx/δ

10
-2

10
-1

10
0

10
1

λ
y
/δ

(e)Φa
vv = 0.2(Φa

vv)max

zo/δ

C1

B1

10
0

10
1

10
2

λx/zo

10
0

10
1

10
2

λ
y
/z

o

λ
x
=
1.
4λ

y

(c)Φww = 0.2(Φww)max

10
-2

10
-1

10
0

λx/δ

10
-2

10
-1

10
0

10
1

λ
y
/δ

(f)Φww = 0.2(Φww)max

zo/δ

C1

B1

Figure 3. Constant energy contours for (a,d) Φa
uu(z+o ), (b,e) Φa

vv(z+o ) and (c,f) Φww(z+o ) (≈ Φa
ww(z+o )) plotted for various z+o as a function of wavelengths

scaled with (a-c) zo and (d-f) δ. Contours in black, blue and red correspond to Φa
ii(z

+
o ) estimated for datasets C1, B1 and B2, respectively. Dark to light

shading indicate an increase in z+o following 2.6
√

Reτ ≤ z+o ≤ 0.15Reτ, for Reτ corresponding to the respective datasets. Dashed green, magenta and
brown lines represent the linear relationships empirically noted for Φa

uu, Φa
vv and Φww, respectively.

should also exhibit wall-scaling [5, 25, 3], analogous to Φww
shown in figure 3. Here, Re refers to the real value of the
complex-valued spectrum Φuw, which is estimated via cross-
correlating the instantaneous velocity fluctuations, u(z+o ) and
w(z+o ). While the former comprises of both the active (uactive)
and inactive (uinactive) contributions, it is uactive which con-
tributes predominantly to Φuw as per Townsend’s hypothesis
[35, 34]. We test this here for the low Reτ DNS data by sep-
arately estimating Φa

uw, defined as:

Φ
a
uw(z

+
o ;λx,λy) = Re[k+x k+y φ

+
uactivew(z

+
o ;λx,λy)], (12)

wherein Φa
uw is estimated by cross-correlating the active com-

ponent of the instantaneous streamwise velocity, uactive(z+o ) and
w(z+o ). To estimate the active and inactive contributions to the
instantaneous flow field u(z+o ), we use the same SLSE method-
ology employed previously for segregating the two contribu-
tions to the energy spectrum. As per the SLSE methodology
[2, 12]:

ũinactive(z+o ;λx,λy) = HL(z+o ,z
+
r ≈15;λx,λy)ũ(z+r ≈15;λx,λy),

(13)
where ũ(z+r ≈ 15; λx, λy) is the 2-D Fourier transform of the
instantaneous wall-parallel flow field, u(z+r ≈ 15) in x and y.
Here, HL represents the scale-specific linear transfer kernel, and
is estimated from an ensemble of data following:

HL(z+o ,z
+
r ≈15;λx,λy)=

〈ũ(z+o ;λx,λy)ũ∗(z+r ≈15;λx,λy)〉
〈ũ(z+r ≈15;λx,λy)ũ∗(z+r ≈15;λx,λy)〉

,

(14)

where the asterisk (∗) and angle brackets (〈〉) denote the
complex conjugate and ensemble averaging, respectively [12].
uinactive(z+o ), which can be retrieved on inverse Fourier trans-
forming ũinactive(z+o ), is then used to obtain uactive(z+o ) follow-
ing the linear decomposition of u(z+o ) given in (3).

Figure 4 compares Φuw and Φa
uw estimated for the two DNS

datasets B1 (figure 4(b)) and C1 (figure 4(a)) at z+o across the
log-region. It can be observed that both Φuw and Φa

uw ex-
hibit reasonable wall-scaling, with Φuw ≈ Φa

uw in the small and
intermediate-scale range. The good overlap of contours in fig-
ure 4 is a testament to Townsend’s hypothesis on the active mo-
tions being solely responsible for producing the Reynolds shear
stress. There is, however, some disagreement between Φuw and
Φa

uw at large scales, where Φuw contours can be seen deviating
away from the zo-scaling. This may be owing to the influence of
the large δ-scaled motions via non-linear interactions with the
active motions [24, 23], and is currently under investigation by
the authors.

Conclusions

This paper presents arguments in support of Townsend’s hy-
pothesis [35, 34] on the statistical nature of the Reynolds stress
carrying motions in wall-bounded turbulent flows. As per
Townsend, the wall-bounded flow at any point comprises of
two components – (i) active motions, which are responsible for
transferring the momentum, and (ii) inactive motions, with both
conforming to Townsend’s self-similar attached eddies. Empir-
ical support is provided to these arguments via implementation
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Figure 4. Constant energy contours for Φuw(z+o ) (in red) and Φa
uw(z+o ) (in black) computed for datasets (a) C1 and (b) B1 and plotted for various z+o as a

function of wavelengths scaled with zo. Dark to light shading indicates an increase in z+o following 2.6
√

Reτ ≤ z+o ≤ 0.15Reτ, for Reτ corresponding to
the respective datasets.

of an SLSE-based energy decomposition methodology on pre-
viously published wall-turbulence datasets. The procedure first
isolates the turbulent kinetic energy associated with the inactive
motions, by exploiting their known characteristic of being com-
paratively larger than the coexisting active motions [35, 34].
Energy associated with the active motions (Φa

ii, where i = u,
v or w) is then estimated by subtracting this ‘inactive’ energy
from the total energy.

The SLSE methodology is demonstrated to be effective for all
three velocity components in a wall-bounded turbulent flow by
testing the scaling characteristics of the active motions. Φa

ii con-
tours are noted to obey wall-scaling across a large Reτ range.
The good overlap between the estimates from both the experi-
mental and DNS datasets also establishes Taylor’s hypothesis
to be a reasonable assumption for the active motions. Fur-
ther, the decomposition of Φii into Φa

ii and Φia
ii reveals the ge-

ometric self-similarity of the inactive and active motions, sug-
gesting they can be conceptually modelled using the attached
eddy model framework [28, 21]. The ability to decompose
the active and inactive contributions also permits computation
of Φa

uw, which considers the cross-correlation exclusively be-
tween uactive and w. Φa

uw contours are found to agree well
with the Φuw contours, thus endorsing Townsend’s hypothesis
on the active motions as the sole Reynolds shear stress carry-
ing motions in wall-bounded flows. In the present work, sup-
port towards the validity of Townsend’s hypothesis, for the lat-
eral velocity components, has only been possible via low-Reτ

datasets. This motivates undertaking of multi-component multi-
point high Reynolds number experiments in the future to firmly
establish the validity of this hypothesis for all three velocity
components.
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